

Safe speeds in a sustainably safe system

Dr H.L. Stipdonk
Berlin, 7. Dezember 2016

Henk Stipdonk, SWOV

physics, traffic theory, navigation safety, road safety, data, analysis
Expertise
data-experts, civil engineers, psychologists, mathematicians, ...

Pendant, SafetyNet, DaCoTA, SafetyCube, SaferWheels, SaferAfrica, ...

In depth analysis, data matching, empirical research, instrumented bicycles, ...

Crashes, mobility, hospital, violations, fleet, driving license, infrastructure, ...

Risk, distance travelled and casualties

Distance travelled

Risk determined by conditions and properties: SPI's, measures, factors

Casualties (road deaths, serious road injuries)

Dominant factor: Vehicle speed \& speed difference

How to achieve safe speeds always, everywhere?

How to achieve safe speeds always, everywhere?

Can we train all travellers, until they are perfect drivers, that obey all rules always?

Or should we design safe roads that enforce safe speeds?

Should we bet on intelligent vehicles that know and obey the speed limit?

A safe system starts with safe roads, but traffic is not uniform!

Traffic is not uniform!

Traffic is not uniform!

Sustainable safety in a nutshell

- As humans are fallible and vulnerable,
- ... although drivers should know and obey the rules, and enforcement efforts are essential,
- vehicles cannot ensure road safety for all, although it certainly helps (and has helped a lot).
- roads should be designed to meet the requirements for the road's traffic function.

How do safe speeds depend on road function

Types of road and traffic	Safe travel speed (km/h)
Locations with possible conflicts between cars and pedestrians (low traffic volume q)	$30 \mathrm{~km} / \mathrm{h}$
Intersections with possible side collisions between cars (and no possible conflicts as mentioned above!)	$50 \mathrm{~km} / \mathrm{h}$
Roads with possible frontal collisions between cars (and no conflicts as above)	$70 \mathrm{~km} / \mathrm{h}$
Roads with no possibility of side or frontal collisions and safe roadsides (and no conflicts as above, high q)	$\approx 120 \mathrm{~km} / \mathrm{h}$

The design requirement: Safe roads should have a safe and credible speed limit, given the function of the raadn/:

30 km/h roads (urban), some Dutch examples

Traffic structures: tree

$30 \mathrm{~km} / \mathrm{h}$ roads (urban), no credible speed limit

30 km/h roads (urban), properties

	Property	Value	SSA	SaCreD	extra
1	Length of road links	short/long		X	
2	Road width	narrow/ wide		X	
3	Paving	pavers/asphalt	X	X	
4	Street lighting	low/high			X
5	Surroundings	closed/ open		X	
6	Connections to houses/shops	yes/no	X		
7	Road axis marking	no/ special/ yes	X	X	
8	Road side marking	no/ yes	X		
9	Separate lanes	no/ yes/ green/ water	X	X	
10	Priority intersections	no/ yes/roundabout/ priority bicycle lane	X	X	
11	Intersection layout	plateau/ punaise/ other color/ roundabout/ none	X		
12	Traffic sign installations	no/ yes	X		
13	Speed controlling measures	hump/road narrows/road axix shifts/ none	X	X	
14	Pedestrian crossing possible	everywhere/ specific (ZEBRA)/ none			X
15	Pedestrian lane	sidewalk/ none			X
16	Bicycle lane	none/ coloured pavement/ separate	X	X	
17	Car parking	parking spaces/ along the road/ none		X	

$30 \mathrm{~km} / \mathrm{h}$ roads (urban), credible speed limit

30 km/h roads (urban), some Dutch examples

$50 \mathrm{~km} / \mathrm{h}$ roads (urban), some Dutch examples

$60 \mathrm{~km} / \mathrm{h}$ roads (rural), before

- Before sustainable safety:
- 80 km/h
- central marking

$60 \mathrm{~km} / \mathrm{h}$ roads, before-after

Wrong. Side strip too
narrow

Right: side strip with correct width

Wrong: no marking at roadside, no speed hump (road width $>4,5 \mathrm{~m}$)

Right: correct roadside marking line and speed hump

60 km/h roads, intersections, before-after

Wrong: unclear priority, no speed
humps

Right: plateau speed reduction and clearly recognizable intersection

$60 \mathrm{~km} / \mathrm{h}$ roads, transition region, before-after

Wrong, roads look similar

Right, recognizable road design elements

$60 \mathrm{~km} / \mathrm{h}$ roads, transition region, before-after

Right: beacons on the hard shoulder

Right: rumblestrips

$80 \mathrm{~km} / \mathrm{h}$ roads (rural), before

2U12-11-15 EEA 67:35:G4

$80 \mathrm{~km} / \mathrm{h}$ roads (rural), before-after

Wrong: overtaking whith possible countertraffic above 70km/h

The sign doesn't prevent overtakings!

Right: physical barries between directions

$80 \mathrm{~km} / \mathrm{h}$ roads (rural), before-after

Wrong: obstacle-free zone to narrow

Right:

- Double solid line road axis marking
- Dashed roadside marking + correction zone
- Obstacle free zone >6m

Concluding remarks

- Roads need to be categorized by their functions
- Speeds should match the road function.
- Road design should enforce those safe speeds
- When road design cannot do the trick, we need enforcement.
- This is especially the case for high speed roads (motorways, highways).

